
DOAG conference, November 17th - 20th 2015 | Nuremberg

1

Identifying performance issues beyond the Oracle wait interface

Stefan Koehler
Freelance Consultant (Soocs)

Coburg, Germany

Keywords
Oracle performance, Stack trace, System call trace, Perf, DTrace, GDB, Oradebug, Performance
counters for Linux, Systemtap, (CPU) Flame graph, Systematic troubleshooting, Strace

Introduction
The Oracle code is already instrumented very well and provides a lot of wait events, performance
statistics and performance metrics by default. Unfortunately all of these statistics and metrics do not
provide enough information to drill down to the root cause of a performance issue in various cases
(mostly CPU based issues). In such cases the Oracle code needs to be disassembled and profiled. This
session explores different possibilities to profile the Oracle code and how to interpret the results.

About the author
Stefan Koehler follows his passion about Oracle since +12 years and specialized in Oracle
performance tuning, especially in Oracle cost based optimizer (CBO) and database internal related
topics. Nowadays he primarily works as a freelance Oracle database performance consultant in large
mission critical environments (e.g. +10 TB databases) for market-leading companies or multi-billion
dollar enterprises in various industries all over the world. He usually supports his clients in
understanding and solving complex Oracle performance issues and troubleshooting nontrivial database
issues on short-term contracting basis.

Systematic performance troubleshooting approach
Discovering the root cause of a slow application is often not easy and finding a proper solution to the
root cause(s) may even be harder, if the Oracle wait interface and performance metrics do not provide
any useful hints. A systematic and scientific approach like the following is usually needed to address a
performance issue in the most efficient and economic way:

1. Identify the performance bottleneck based on response time with Method R by Cary Millsap [1]

 1.1 Select the user actions for which the business needs improved performance.
 1.2 Collect properly scoped diagnostic data that will allow you to identify the causes of
 response time.
 1.3 Execute the candidate optimization activity that will have the greatest net payoff to the
 business. If even the best net-payoff activity produces insufficient net payoff, then
 suspend your performance improvement activities until something changes.
 1.4 Go to step 1.1.

2. Interpret the execution plan with help of additional SQL execution statistics (or Real-Time
 SQL Monitoring) and the wait interface
 2.1 For example with the proper diagnostic data from point 1.2 and with PL/SQL package
 DBMS_XPLAN or DBMS_SQLTUNE

3. Capture and interpret the session statistics and performance counters
 3.1 For example with tools like Snapper by Tanel Poder [2]

4. Capture and interpret system call traces or stack traces dependent on the issue

DOAG conference, November 17th - 20th 2015 | Nuremberg

2

The DOAG conference session and this paper is only about step 4 in the systematic performance
troubleshooting approach. Step 4 is like disassembling the Oracle code and should only be considered
if all the previous steps do not point to the root cause of the issue or for researching purpose of course.
Why do we need this at all? Generally speaking we need to know in what kind of Oracle kernel code
the process is stuck or in which Oracle kernel code the most (CPU) time is spent.

“System call” and “Call stack”
System call [3]
 The system call is the fundamental interface between an application and the Linux kernel.

 System calls and library wrapper functions
 System calls are generally not invoked directly, but rather via wrapper functions in glibc (or perhaps
 some other library). For details of direct invocation of a system call, see intro(2). Often, but not
 always, the name of the wrapper function is the same as the name of the system call that it invokes.
 For example, glibc contains a function truncate() which invokes the underlying "truncate" system
 call. Often the glibc wrapper function is quite thin, doing little work other than copying arguments
 to the right registers before invoking the system call, and then setting errno appropriately after the
 system call has returned.

 Note: System calls indicate a failure by returning a negative error number to the caller; when this
 happens, the wrapper function negates the returned error number (to make it positive), copies it to
 errno, and returns -1 to the caller of the wrapper.

 Sometimes, however, the wrapper function does some extra work before invoking the system call.
 For example, nowadays there are (for reasons described below) two related system calls, truncate(2)
 and truncate64(2), and the glibc truncate() wrapper function checks which of those system calls are
 provided by the kernel and determines which should be employed.

 Exemplary tools to trace system calls: strace (Linux), truss (AIX / Solaris), tusc (HP-UX)

Call stack
 A call stack is the list of names of methods that are called at run time from the beginning of a
 program until the execution of the current statement.

 A call stack is mainly intended to keep track of the point to which each active subroutine should
 return control when it finishes executing. A call stack acts as a tool to debug an application when
 the method to be traced can be called in more than one context. This forms a better alternative than
 adding tracing code to all methods that call the given method.

 Exemplary tools to capture stack traces: oradebug (Oracle), gdb and its wrapper scripts or perf or
 systemtap (Linux), dtrace (Solaris), procstack (AIX)

Generally speaking the main difference is that the call stack trace includes the called methods or
functions of an application (including the system calls) like an Oracle process and that the system call
trace includes only the (function) requests to the operating system kernel.

DOAG conference, November 17th - 20th 2015 | Nuremberg

3

System call trace anomaly on Linux
The main focus in this paper is on capturing and interpreting call stacks, but one anomaly by tracing
system calls on Linux should be mentioned as it is causing confusion from time to time.

For example: A particular SQL is executed with hint „gather_plan_statistics” to enable rowsource
statistics. In this case a lot of gettimeofday() (= up to and including Oracle 11g implementation) or
clock_gettime() (= Oracle 12c implementation) system calls should usually appear as Oracle needs
that timing information to calculate the rowsource statistics.

The following demo is run on Oracle 12.1.0.1 and Linux kernel 2.6.39-400.109.1.el6uek.x86_64.

 NAME VALUE
 --------------------------------------- -------
 _rowsource_statistics_sampfreq 128

 SYS@T12DB:181> select /*+ gather_plan_statistics */ count(*) from dba_objects;

 shell> strace -cf -p 1915
 Process 1915 attached - interrupt to quit
 % time seconds usecs/call calls errors syscall
 ------ ----------- ----------- --------- --------- ----------------
 75.81 0.000514 24 21 mmap
 24.19 0.000164 9 19 getrusage
 0.00 0.000000 0 2 read
 0.00 0.000000 0 2 write
 0.00 0.000000 0 2 munmap
 0.00 0.000000 0 8 times
 ------ ----------- ----------- --------- --------- ----------------
 100.00 0.000678 54 total

Expecting to see a lot of gettimeofday() or clock_gettime() system calls during the SQL execution as
the sampling rate is set to 128 (default value), but strace does not show any of these system calls at all.

The reason for this behavior is the vDSO / vsyscall64 implementation in Linux. [4]
Generally speaking a virtual dynamic shared object (vDSO), is a shared library that allows
applications in user space to perform some kernel actions without as much overhead as a system call.

Enabling the vDSO instructs the kernel to use its definition of the symbols in the vDSO, rather than
the ones found in any user-space shared libraries, particularly the glibc. The effects of enabling the
vDSO are system wide - either all processes use it or none do. When enabled, the vDSO overrides the
glibc definition of gettimeofday() or clock_gettime() with it's own. This removes the overhead of a
system call, as the call is made direct to the kernel memory, rather than going through the glibc.

 shell> ldd $ORACLE_HOME/bin/oracle
 linux-vdso.so.1 => (0x00007fff3c1f1000)
 …

 shell> cat /proc/sys/kernel/vsyscall64
 1

The vDSO boot parameter has three possible values:
 0 = Provides the most accurate time intervals at µs (microsecond) resolution, but also produces the
 highest call overhead, as it uses a regular system call
 1 = Slightly less accurate, although still at µs resolution, with a lower call overhead
 2 = The least accurate, with time intervals at the ms (millisecond) level, but offers the lowest call
 overhead

DOAG conference, November 17th - 20th 2015 | Nuremberg

4

Back to the example and the strace output. The corresponding gettimeofday() or clock_gettime()
system calls can be noticed if vDSO is “by-passed”.

 shell> echo 0 > /proc/sys/kernel/vsyscall64

 shell> strace -cf -p 1915
 Process 1915 attached - interrupt to quit
 % time seconds usecs/call calls errors syscall
 ------ ----------- ----------- --------- --------- ----------------
 97.58 0.106397 9 11946 clock_gettime
 1.83 0.001999 1000 2 read
 0.26 0.000282 35 8 times
 0.17 0.000181 9 21 mmap
 0.16 0.000176 8 23 getrusage
 0.00 0.000000 0 2 write
 0.00 0.000000 0 2 munmap
 0.00 0.000000 0 1 gettimeofday
 ------ ----------- ----------- --------- --------- ----------------
 100.00 0.109035 12005 total

System calls to clock_gettime() suddenly appear “without” vDSO, but there is an overhead of round
about 0.1 seconds for such a simple „light-weight“ query with rowsource statistics enabled.

Capturing stack traces on Linux
In general several tools are available to capture stack traces of an Oracle process. The following list
includes some examples:
 - Tool “Oradebug” provided by Oracle and available on all OS platforms
 - Tool “GDB” and its wrapper scripts on Linux
 - Tool “Perf” and the kernel (>= 2.6.31) interface “perf_events” on Linux
 - Tool “Systemtap” on Linux kernel >= 3.5 for userspace otherwise “utrace patch” is needed [5]
 - Tool “DTrace” on Solaris
 - Tool “Procstack” on AIX

The upcoming sections focus on the tools “Oradebug”, “GDB” and its wrapper scripts and “Perf”.

Oradebug [6]
 “Oradebug” is a tool provided by Oracle and primarily used by Oracle support to check or
 manipulate Oracle internals. The tool itself is mainly undocumented, but provides a good help
 interface. It also provides the capability to get an abridged call stack of the attached process.
 Internally “Oradebug” sends a SIGUSR2 signal to the corresponding target process, which captures
 the signal in function sspuser(). The function sspuser() performs further debugging actions
 afterwards. [7] Tracing the corresponding system calls confirms the described internal behavior.

 shell> ps -fu oracle | grep LOCAL=NO
 oracle 1870 1 0 10:55 ? 00:00:00 oracleT12DB (LOCAL=NO)

 SQL> oradebug setospid 1870
 Oracle pid: 43, Unix process pid: 1870, image: oracle@OEL

 SQL> oradebug short_stack
 ksedsts()+213<-ksdxfstk()+34<-ksdxcb()+914<-sspuser()+191<-__sighandler()<-read()+14<-
 nttfprd()+309<-nsbasic_brc()+393<-nsbrecv()+86<-nioqrc()+520<-opikndf2()+995<-
 opitsk()+803<-opiino()+888<-opiodr()+1170<-opidrv()+586<-sou2o()+120<-opimai_real()+151<-
 ssthrdmain()+392<-main()+222<-__libc_start_main()+253

 shell> strace -f -p 1870
 Process 1870 attached - interrupt to quit
 read(35, 0x7fcaa163fece, 2064) = ? ERESTARTSYS (To be restarted)
 --- SIGUSR2 (User defined signal 2) @ 0 (0) ---
 …

DOAG conference, November 17th - 20th 2015 | Nuremberg

5

 Let’s have a look how “Oradebug” works in general with an Oracle process that is in idle mode and
 waiting for SQL commands via SQL*Net. The following demo is run on Oracle 12.1.0.1 and Linux
 kernel 2.6.39-400.109.1.el6uek.x86_64.

 shell> ps -fu oracle | grep LOCAL=NO
 oracle 1888 1 0 13:44 ? 00:00:00 oracleT12DB (LOCAL=NO)

 SQL> oradebug setospid 1888
 Oracle pid: 43, Unix process pid: 1888, image: oracle@OEL

 SQL> oradebug short_stack
 ksedsts()+213<-ksdxfstk()+34<-ksdxcb()+914<-sspuser()+191<-__sighandler()<-read()+14<-
 nttfprd()+309<-nsbasic_brc()+393<-nsbrecv()+86<-nioqrc()+520<-opikndf2()+995<-
 opitsk()+803<-opiino()+888<-opiodr()+1170<-opidrv()+586<-sou2o()+120<-opimai_real()+151<-
 ssthrdmain()+392<-main()+222<-__libc_start_main()+253

 A call stack needs to be read bottom up. The first function “__libc_start_main()” performs any
 necessary initialization of the execution environment like security checks, etc.. In the previous
 example the Oracle process starts in function main(), which calls function ssthrdmain(), which calls
 function opimai_real() and so on. You may recognize the main() call structure if you are familiar
 with writing C code.
 However as previously explained everything above and including function sspuser() is caused by
 the “Oradebug” request. The process itself is currently executing a system call read() which waits
 for data on the socket (network input). The syntax „+<NUMBER>“ specifies the offset in bytes
 from the beginning of the function (symbol) where the child function is called. This is also the next
 instruction to continue with when the child function returns. In addition each Oracle (kernel) layer is
 also present and interpretable in the stack trace. [8]

 Graphic source: Book “Oracle 8i Internal Services” – Thankfully approved by Steve Adams [8]

 The Oracle program interface (OPI)
 Oracle program interface is the highest layer of the server-side call stack. In most configurations,
 Net8 bridges the gap between UPI and OPI. However, in single-task executables there is no gap,
 and the UPI calls correspond directly to OPI calls.

 opikndf2()+995<-opitsk()+803<-opiino()+888<-opiodr()+1170<-opidrv()+586<-sou2o()+120<-
 opimai_real

 A pretty detailed explanation of each OPI function in this stack can be found in Tanel Poder’s
 blog post “Advanced Oracle Troubleshooting Guide, Part 2: No magic is needed, systematic
 approach will do”. [9]

DOAG conference, November 17th - 20th 2015 | Nuremberg

6

GDB and its wrapper scripts
 The “GDB” (GNU debugger) allows you to see what is going on inside another program while it
 executes or what another program was doing at the moment it crashed. “GDB” can do four main
 kind of things (plus other things in support of these):
 - Start a program, specifying anything that might affect its behavior
 - Make a program stop on specified conditions
 - Examine what has happened, when a program has stopped
 - Change things in a program

 “GDB” (and its wrapper scripts) should just be used to capture stack traces by having the focus on
 this paper.

 Let’s have a look how it works in general with an Oracle process that is in idle mode and waiting
 for SQL commands via SQL*Net (same process state as with “Oradebug”). The following demo is
 run on Oracle 12.1.0.1 and Linux kernel 2.6.39-400.109.1.el6uek.x86_64.

 shell> ps -fu oracle | grep LOCAL=NO
 oracle 1834 1 1 10:16 ? 00:00:00 oracleT12DB (LOCAL=NO)

 (gdb) attach 1834
 Attaching to process 1834
 Reading symbols from /oracle/rdbms/12101/bin/oracle...(no debugging symbols found)...done.
 …

 (gdb) bt
 #0 0x000000336d00e530 in __read_nocancel () from /lib64/libpthread.so.0
 #1 0x000000000b924620 in snttread ()
 #2 0x000000000b923a95 in nttfprd ()
 #3 0x000000000b90eac9 in nsbasic_brc ()
 #4 0x000000000b90e8d6 in nsbrecv ()
 #5 0x000000000b913778 in nioqrc ()
 #6 0x000000000b5b9a43 in opikndf2 ()
 #7 0x0000000001e44f93 in opitsk ()
 #8 0x0000000001e49c28 in opiino ()
 #9 0x000000000b5bc3c2 in opiodr ()
 #10 0x0000000001e4118a in opidrv ()
 #11 0x00000000025381f8 in sou2o ()
 #12 0x0000000000b393a7 in opimai_real ()
 #13 0x0000000002542898 in ssthrdmain ()
 #14 0x0000000000b392de in main ()

 The first eye-catching message “no debugging symbols found” is works-as-designed as Oracle is
 not compiled with debugging information (e.g. gcc option “-g”). This has some impact on
 debugging Oracle functions (and its parameters), but you can even get the function names without
 the debug information. In sum this is all we need in case of stack tracing.

 The content of the stack trace looks like the “Oradebug” one, expect the signal handling part.
 However “GDB” also misses the offset byte addresses, but this is also not an issue in this case.

DOAG conference, November 17th - 20th 2015 | Nuremberg

7

 “GDB” also got some wrapper scripts (e.g. pstack / gstack) where only the process id <PID> is
 handed over but the end result (stack trace output) is the same.

 shell> which pstack
 /usr/bin/pstack

 shell> ls -la /usr/bin/pstack
 lrwxrwxrwx. 1 root root 6 Jun 26 2013 /usr/bin/pstack -> gstack

 shell> file /usr/bin/gstack
 /usr/bin/gstack: POSIX shell script text executable

 shell> cat /usr/bin/gstack
 #!/bin/sh
 …
 # Run GDB, strip out unwanted noise.
 $GDB --quiet $readnever -nx /proc/$1/exe $1 <<EOF 2>&1 |
 …
 $backtrace
 …

 shell> pstack 1834
 #0 0x000000336d00e530 in __read_nocancel () from /lib64/libpthread.so.0
 #1 0x000000000b924620 in snttread ()
 #2 0x000000000b923a95 in nttfprd ()
 #3 0x000000000b90eac9 in nsbasic_brc ()
 #4 0x000000000b90e8d6 in nsbrecv ()
 #5 0x000000000b913778 in nioqrc ()
 #6 0x000000000b5b9a43 in opikndf2 ()
 #7 0x0000000001e44f93 in opitsk ()
 #8 0x0000000001e49c28 in opiino ()
 #9 0x000000000b5bc3c2 in opiodr ()
 #10 0x0000000001e4118a in opidrv ()
 #11 0x00000000025381f8 in sou2o ()
 #12 0x0000000000b393a7 in opimai_real ()
 #13 0x0000000002542898 in ssthrdmain ()
 #14 0x0000000000b392de in main ()

Performance counters for Linux (Linux kernel-based subsystem)
 Capturing stack traces with the Oracle tool “Oradebug” or with a C debugger like “GDB” got one
 common main issue. It needs to be done manually and it is just a snap-reading method, but the
 target is to know where most of the (CPU) time is spent or if a process is stuck in a specific C
 function. A lot of stack trace samples need to be gathered in high frequency and afterwards they
 need to be aggregated to get the whole picture. Tools like “Oradebug” or “GDB” are usually not
 fast enough to sample the stack traces at very high frequency, but luckily the Linux kernel provides
 a solution for this called „Performance counters for Linux“.

 Perf (sometimes “Perf Events”, originally “Performance Counters for Linux”) is a performance
 analyzing tool in Linux. It is available with kernel version 2.6.31 or higher. Performance Counters
 for Linux (PCL) is a kernel-based subsystem that provides a framework for collecting and analyzing
 performance data. The PCL subsystem can be used to measure hardware events, including retired
 instructions and processor clock cycles. It can also measure software events, including major page
 faults and context switches. For example PCL counters can compute the Instructions Per Clock
 (IPC) from a process's counts of instructions retired and processor clock cycles. A low IPC ratio
 indicates the code makes poor use of the CPU. Other hardware events can also be used to diagnose
 poor CPU performance.
 However be very careful with the specifically used events (hardware respectively software) due to
 potential incorrect measurements in virtualized environments. [10] [11]

DOAG conference, November 17th - 20th 2015 | Nuremberg

8

 The tool “Perf” itself is based on the perf_events interface which is exported by recent versions of
 the Linux kernel.

 The common used perf option (“perf record”) for Oracle processes is based on sampling or better
 said perf_events is based on event-based sampling in such cases. The perf_events interface allows
 two modes to express the sampling period:
 - The number of occurrences of the event (period)
 - The average rate of samples/sec (frequency)

 The tool “Perf” defaults to the average rate, which is set to 1000Hz or 1000 samples/sec. It means
 that the kernel is dynamically adjusting the sampling period to achieve the target average rate. In
 contrast, with the other mode, the sampling period is set by the user and does not vary between
 samples. In general the default setting is sufficient for troubleshooting Oracle CPU issues in most
 cases.

 Let’s have a look how it works in general with an Oracle process that executes some SQL statement
 and fetches data via SQL*Net. This demo case includes some workload as it makes no sense to
 profile and sample an idling Oracle process (no stack traces are captured if the process is not on
 CPU and even if it would work this way the call stack would always be the same).
 The following demo is run on Oracle 12.1.0.1 and Linux kernel 2.6.39-400.109.1.el6uek.x86_64.

 SQL> create table TEST as select * from DBA_SOURCE;
 SQL> select /*+ use_hash(t2) gather_plan_statistics */ count(*) from TEST t1, TEST t2
 where t1.owner = t2.owner;

 shell> ps -fu oracle | grep LOCAL=NO
 oracle 1883 1 6 09:54 ? 00:00:03 oracleT12DB (LOCAL=NO)

 shell> perf record -e cpu-cycles -o /tmp/perf.out -g -p 1883
 [perf record: Woken up 47 times to write data]
 [perf record: Captured and wrote 11.597 MB /tmp/perf.out (~506674 samples)]

 shell> ls -la /tmp/perf.out
 -rw------- 1 oracle dba 12162816 Sep 19 09:56 perf.out

 The previous perf command has captured round about 506.674 samples and has written the trace
 data to output file “/tmp/perf.out”. This file can be processed later on with various tools to interpret
 the output.
 “Perf” was also instructed to use the hardware event “cpu-cycles” (parameter “-e“) which
 basically means that the kernel’s performance registers are used to gather information about the
 process that is running on CPU. “Perf” will automatically fallback to the software event “cpu-clock”
 which is based on timer interrupts if the hardware event “cpu-cycles” is not available. [10] [11]

DOAG conference, November 17th - 20th 2015 | Nuremberg

9

Poor man’s stack profiling
 Sometimes just a quick half-hierarchical and aggregated stack profile is needed or Oracle is running
 on a platform without any (installed) profiler like “Perf”. The following solution is pretty slow as it
 is based on “GDB” or better said on its wrapper script “pstack“. In consequence very high sample
 rates (like with tool “Perf”) can not be reached.

 Let’s have a look how it works in general with an Oracle process that executes some SQL statement
 and fetches data via SQL*Net. The following demo is run on Oracle 12.1.0.1 and Linux kernel
 2.6.39-400.109.1.el6uek.x86_64.
 The used script “os_explain” by Tanel Poder [12] decodes specific well known C functions to useful
 meanings (e.g. qerhj* to HASH JOIN, etc.).

 SQL> create table TEST as select * from DBA_SOURCE;
 SQL> select /*+ use_hash(t2) */ count(*) from TEST t1, TEST t2 where t1.owner = t2.owner;

 shell> ps -fu oracle | grep LOCAL=NO
 oracle 4663 1 2 11:12 ? 00:00:00 oracleT12DB (LOCAL=NO)

 shell> export LC_ALL=C ; for i in {1..20} ; do pstack 4663 | ./os_explain -a ; done |
 sort -r | uniq -c
 20 main
 20 ssthrdmain
 20 opimai_real
 20 sou2o
 20 opidrv
 20 opiodr
 20 opiino
 20 opitsk
 20 ttcpip
 20 opiodr
 20 kpoal8
 20 SELECT FETCH:
 20 GROUP BY SORT: Fetch
 20 * TABLE ACCESS: Fetch
 20 HASH JOIN: Fetch
 20 kdsttgr
 20 kdstf000010100001km
 20 HASH JOIN: InnerProbeHashTableRowset
 20 HASH JOIN: InnerProbeProcessRowset
 20 HASH JOIN: WalkHashBucket
 3 qesrAddRowFromCtx
 7 kxhrUnpack
 5 kxhrPUcompare
 1 HASH JOIN: ReturnRowset
 5 rworupo
 1 _intel_fast_memset.J
 2 _intel_fast_memcmp
 4 qksbgGetCursorVal

 In the previous example 20 stack samples were taken with “GDB” and the base function “HASH
 JOIN: WalkHashBucket” was processed all the time. So basically the CPU usage is caused by the
 hash join (respective qerhj* functions) in this very simplistic case. However this is not very
 surprising as the SQL is hinted to perform exactly this action, but this example should only
 demonstrate the general procedure.

DOAG conference, November 17th - 20th 2015 | Nuremberg

10

Interpreting stack traces on Linux
Visualization and interpretation of stack traces is dependent on the source data. The profiling tool
“Perf” can write its output to a file which can be processed later on with various tools.
This section introduces the reporting functionality of “Perf” and one of the most well known tools
(also my personal favorite) for interpreting stack traces called “Flame graph” by Brendan Gregg. [13]

Performance counters for Linux with “Perf” tool
 In the previous chapter an Oracle process (PID 1883) was already profiled and the traced call stacks
 were written to file “/tmp/perf.out”. In this section this file will be processed.

 shell> perf report -i /tmp/perf.out -g none -n --stdio
 # ========
 # captured on: Sat Sep 19 10:01:21 2015
 # hostname : OEL
 # os release : 2.6.39-400.109.1.el6uek.x86_64
 # perf version : 2.6.32-358.11.1.el6.x86_64.debug
 # arch : x86_64
 # nrcpus online : 3
 # nrcpus avail : 3
 # cpudesc : Intel(R) Core(TM) i7-2675QM CPU @ 2.20GHz
 # cpuid : GenuineIntel,6,42,7
 # total memory : 3605136 kB
 # cmdline : /usr/bin/perf record -e cpu-cycles -o /tmp/perf.out -g -p 1883
 # event : name = cpu-clock:HG, type = 1, config = 0x0, config1 = 0x0, config2 = 0x0,
 excl_usr = 0, excl_kern = 0, excl_host = 0, excl_guest = 0, precise_ip = 0,
 id = { 7 }
 # HEADER_CPU_TOPOLOGY info available, use -I to display
 # HEADER_NUMA_TOPOLOGY info available, use -I to display
 # ========
 #
 # Samples: 45K of event 'cpu-clock:HG'
 # Event count (approx.): 45248
 #
 # Overhead Samples Command Shared Object Symbol
 #
 #
 27.54% 12462 oracle_1883_t12 oracle [.] qerhjWalkHashBucket
 14.44% 6534 oracle_1883_t12 oracle [.] kxhrPUcompare
 14.21% 6429 oracle_1883_t12 oracle [.] rworupo
 10.17% 4602 oracle_1883_t12 oracle [.] qesrAddRowFromCtx
 9.49% 4294 oracle_1883_t12 oracle [.] qksbgGetCursorVal
 …
 0.01% 3 oracle_1883_t12 librt-2.12.so [.] clock_gettime
 0.01% 3 oracle_1883_t12 [vdso] [.] 0x00007fffecbff9c1
 …
 0.00% 1 oracle_1883_t12 [kernel.kallsyms] [k] kref_get
 0.00% 1 oracle_1883_t12 [kernel.kallsyms] [k] scsi_run_queue

 The trace file was analyzed with “Perf” and option “-g none”, which basically just prints out the
 CPU consuming functions at the top of the call stack.
 “Perf record” was started with the hardware event “cpu-cycles”, but the samples were taken with the
 software event “cpu-clock” as my platform (Virtual Box) does not support the kernel’s performance
 registers at the time of writing. This silent fallback was already mentioned in the previous chapter.

 The application (userspace) functions like “qerhjWalkHashBucket” or “kxhrPUcompare” are
 marked with “[.]” in contrast to the OS kernel space functions like “kref_get” or “scsi_run_queue”
 which are marked with “[k]”. The vDSO functions are also included of course.

 As a result 27.54% of the CPU time was spent in Oracle (user space) function
 “qerhjWalkHashBucket”, 14.44% of the CPU time was spent in Oracle (user space) function
 “kxhrPUcompare” and so on. This method enables to drill down the CPU consumer in detail.

DOAG conference, November 17th - 20th 2015 | Nuremberg

11

 “Perf report” also has the possibility to include the whole stack trace in the output. The following
 output is truncated to the top userspace functions “qerhjWalkHashBucket” and “rworupo” for
 demonstration purpose.

 shell> perf report -i /tmp/perf.out -g graph -n --stdio
 …
 # Overhead Samples Command Shared Object Symbol
 #
 #
 27.54% 12462 oracle_1883_t12 oracle [.] qerhjWalkHashBucket
 |
 --- qerhjWalkHashBucket
 qerhjInnerProbeProcessRowset
 qerhjInnerProbeHashTableRowset
 qerstRowP
 qerstRowP
 kdstf000010100001km
 kdsttgr
 qertbFetch
 qerstFetch
 rwsfcd
 …
 ssthrdmain
 main
 __libc_start_main
 …
 14.21% 6429 oracle_1883_t12 oracle [.] rworupo
 |
 --- rworupo
 |
 |--13.54%-- kxhrUnpack
 | qerhjWalkHashBucket
 | qerhjInnerProbeProcessRowset
 | qerhjInnerProbeHashTableRowset
 | qerstRowP
 | qerstRowP
 | kdstf000010100001km
 | kdsttgr
 | qertbFetch
 | qerstFetch
 | rwsfcd
 …
 | ssthrdmain
 | main
 | __libc_start_main
 |
 --0.67%-- qerhjWalkHashBucket
 qerhjInnerProbeProcessRowset
 qerhjInnerProbeHashTableRowset
 qerstRowP
 qerstRowP
 kdstf000010100001km
 kdsttgr
 …
 ssthrdmain
 main
 __libc_start_main

DOAG conference, November 17th - 20th 2015 | Nuremberg

12

 The whole stack trace reveals how the top CPU consuming functions are called. For example:
 - Function “qerhjWalkHashBucket” (where 27.54% of the CPU time is spent) is just called from
 one stack (function “__libc_start_main” up to “qerhjInnerProbeProcessRowset”, which finally
 calls “qerhjWalkHashBucket”).
 - Function “rworupo” (where 14.21% of the CPU time is spent) is called from two different
 child functions (= two different stacks). In this case from stack function “__libc_start_main” up
 to “kxhrUnpack”, which finally calls “rworupo” and from stack function “__libc_start_main” up
 to “qerhjWalkHashBucket”, which finally calls “rworupo”. “Perf” also shows a break down of
 the CPU time to these different stacks (e.g. 13.54% from 14.21% overall CPU time is spent on
 stack from stack function “__libc_start_main” up to “kxhrUnpack”).

 The Oracle (kernel) application function names are cryptic, but some can be translated with help of
 MOS ID #175982.1 - “ORA-600 Lookup Error Categories”. The note was deleted by Oracle some
 time ago, but it still can be found in the world wide web very easily.

 However interpreting stack traces with the tool “Perf” has one major issue. Basically all we need to
 know is where the bulk of the CPU time is spent, but the track can be lost very easily, if the CPU
 consuming functions are called from various stacks and if the calling functions are consuming a lot
 of CPU too. The previous case is a very simple stack, but it already demonstrates such a situation.
 Function “qerhjWalkHashBucket” causes 27.54% of the CPU time, but this function is also
 included in the stack of the other top consuming function “rworupo”. So basically the CPU
 consumption of function “rworupo” may indirectly caused (as called) by “qerhjWalkHashBucket”
 as well, but this is not obvious at the first sight. It is just too much data to interpret with tool “Perf”
 in more complex scenarios (and especially with a lot of similar call stacks).

DOAG conference, November 17th - 20th 2015 | Nuremberg

13

Flame graph by Brendan Gregg [13]

 (CPU) flame graph by Brendan Gregg solves the issue with “perf report” that was mentioned
 previously. Flame graph is a visualization of profiled software, allowing the most frequent
 code-paths to be identified quickly and accurately. The output is an interactive SVG graphic.

 In the previous chapter an Oracle process (PID 1883) was already profiled with tool “Perf” and the
 sampled and traced call stacks were written to file “/tmp/perf.out”. In this section the file (the same
 file that was previously processed with “perf report”) will be processed with flame graph.

 shell> perf script -i /tmp/perf.out | ./stackcollapse-perf.pl > /tmp/perf.folded
 shell> ./flamegraph.pl /tmp/perf.folded > /tmp/perf.folded.svg

 The following is a description of the graph layout by Brendan Gregg:
 - Each box represents a function in the stack (a "stack frame").
 - The y-axis shows stack depth (number of frames on the stack). The top box shows the function
 that was on-CPU. Everything beneath that is ancestry. The function beneath a function is its
 parent, just like the stack traces shown earlier.
 - The x-axis spans the sample population. It does not show the passing of time from left to right,
 as most graphs do. The left to right ordering has no meaning (it's sorted alphabetically to
 maximize frame merging).
 - The width of the box shows the total time it was on-CPU or part of an ancestry that was on-CPU
 (based on sample count). Functions with wide boxes may consume more CPU per execution

DOAG conference, November 17th - 20th 2015 | Nuremberg

14

 than those with narrow boxes, or, they may simply be called more often. The call count is not
 shown (or known via sampling).
 - The sample count can exceed elapsed time if multiple threads were running and sampled
 concurrently.

 Zooming into the stacks and searching for some specific function is also possible with the newest
 flame graph version.
 However the graphic reveals what was mentioned in the previous chapter. The function
 “qerhjWalkHashBucket” is consuming 27.54% of the CPU time on its own, but it is basically
 “active” at the whole time as it also calls all the other functions like “kxhrPUcompare” (+ on top
 functions), “kxhrUnpack” (+ on top functions), “qerhjReturnRowset” (+ on top functions) and so
 on. Flame graph solves this lack of information in the “Perf” output and allows a quick
 identification of the potential base issue.

Safety warning! Are debuggers and capturing “stack traces” safe to use (in production)?
The safety of debugging Oracle depends on the used approach or tools and may be dangerous as the
corresponding process might crash or get some ORA errors without any obvious reason. It usually
does not matter when the database is already completely stuck and nobody can work anymore, but do
not use some specific debuggers on critical background processes (in production) if only some
sessions or processes are affected.

Tool “Oradebug” = Unsafe
 This tool alters the execution path (e.g. “ksedsts()+213<-ksdxfstk()+34<-ksdxcb()+914<
 sspuser()+191<-__sighandler()”) of the attached process when dumping the call stack. This might
 crash the attached process (or the whole database) in case of an Oracle bug. An example of such an
 issue with LGWR would be Oracle bug #15677306 - “ORACLE LOGWRITER HARD HANG
 WHEN SIGUSR INTERRUPTS LIBAIO”.

Tool “GDB” and its wrapper scripts = Unsafe
 These tools suspend the process to get a call stack by attaching via ptrace() syscall. The attached
 process may be affected by ptrace() when communicating with the operating system kernel or
 other processes (e.g. issues with sending/receiving I/O interrupts, etc.).

 Do not confuse it with pstack on Solaris or procstack on AIX. These tools do not rely on ptrace()
 syscalls and are safe to use. Basically both tools just read the stack information from the /proc file
 system and memory.

 However be aware that the tool “strace” is also based on ptrace(). I personally have never
 experienced an Oracle process crash due to “strace”, but it is possible in theory as well. After a short
 chat with Tanel Poder, he also confirmed that he was suffered by crashing processes with “strace”
 under certain circumstances.

Performance counters for Linux (Linux kernel-based subsystem) = Safe
 Performance counters for Linux respectively “Perf” relies on its own kernel interface and do not use
 ptrace(). It also does not alter the execution path of a process or suspend it. So basically it is safe
 to use. However the tool “Perf” only samples stacks of processes that are running on CPU (e.g. like
 in the previous demo case with CPU intensive functions that are used by the hash join). A fallback
 to the other tools is still needed, if the process is not running on CPU and stuck somewhere else.

DOAG conference, November 17th - 20th 2015 | Nuremberg

15

Combine the Oracle wait interface and stack traces [14]
This paper described detailed CPU consumption analysis so far, but combining the Oracle wait
interface (e.g. for I/O wait states, etc.) and “Perf” analysis in one shot is also possible. This is
extremely useful, if the whole response time picture of a process is needed. Craig Shallahamer and
Frits Hoogland developed a script called “fulltime.sh” that is based on the Oracle wait interface
(v$session_event) and performance counters for Linux (“Perf”).

Let’s have a look how it works in general with an Oracle process that executes some SQL statement
and fetches data via SQL*Net. The following demo is run on Oracle 12.1.0.1 and Linux kernel 2.6.39-
400.109.1.el6uek.x86_64.

 SQL> select /*+ use_hash(t2) */ count(*) from TEST t1, TEST t2 where t1.owner = t2.owner;

 shell> ps -fu oracle | grep LOCAL=NO
 oracle 1861 1 0 10:40 ? 00:00:00 oracleT12DB (LOCAL=NO)

 shell> ./orapub_fulltime_cpu_wait_perf.sh 1861 10 1

 PID: 1861 SID: 12 SERIAL: 5 USERNAME: TEST at 22-Sep-2015 11:06:26
 CURRENT SQL: select /*+ use_hash(t2) */ count(*) from TEST t1, TEST t2 where t1.own

 total time: 11.376 secs, CPU: 6.584 secs (57.88%), wait: 4.792 secs (42.12%)

 Time
 Time Component secs %
 -- ---------- -------
 wait: SQL*Net message from client 4.767 41.90
 cpu : [.] qerhjWalkHashBucket 1.976 17.37
 cpu : [.] rworupo 1.064 9.35
 cpu : [.] kxhrPUcompare 0.839 7.37
 cpu : [.] qesrAddRowFromCtx 0.749 6.58
 cpu : [.] qksbgGetCursorVal 0.508 4.47
 cpu : [k] finish_task_switch 0.491 4.32
 cpu : [.] kxhrUnpack 0.317 2.78
 cpu : [.] _intel_fast_memcmp 0.231 2.03
 cpu : [.] qksbgGetVal 0.227 2.00
 cpu : [?] sum of funcs consuming less than 2% of CPU time 0.182 1.60
 wait: direct path read 0.025 .22
 wait: db file sequential read 0.000 .00
 wait: SQL*Net message to client 0.000 .00

The output shows a detailed break down of the CPU usage and the additional wait events that occur in
the captured time window of 10 seconds (second script parameter).
The wait event “SQL*Net message from client” is on top as the SQL was started after the profiling
script “orapub_fulltime_cpu_wait_perf.sh”. All the other time components are related to the SQL
execution.

DOAG conference, November 17th - 20th 2015 | Nuremberg

16

In addition Oracle 12c expanded its kernel diagnostics & tracing infrastructure with the diagnostic
event “wait_event[]”. This event provides the capability to capture a stack trace after a specific wait
event has occurred and so it interacts with the general Oracle wait interface. This may be useful for
analyzing and drilling down the Oracle code path for/after a specific wait event.

The syntax for this new diagnostic event is the following:

 SQL> alter session set events 'wait_event["<wait event name>"] trace("%s\n",
 shortstack())';

Let’s have a look how it works in general with an Oracle process that executes some SQL statement
and fetches data via SQL*Net. The following demo is run on Oracle 12.1.0.1 and Linux kernel 2.6.39-
400.109.1.el6uek.x86_64.

 SQL> alter session set events 'wait_event["direct path read"] trace("%s\n",
 shortstack())';
 SQL> exec DBMS_MONITOR.SESSION_TRACE_ENABLE(NULL,NULL,TRUE,FALSE,'NEVER');
 SQL> select /*+ use_hash(t2) */ count(*) from TEST t1, TEST t2 where t1.owner = t2.owner;

 Trace file
 =====================
 PARSING IN CURSOR #140311192202592 len=83 dep=0 uid=116 oct=3 lid=116 tim=589822292
 hv=3504242112 ad='6f59e608' sqlid='0w1v4xg8dwzf0'
 select /*+ use_hash(t2) */ count(*) from TEST t1, TEST t2 where t1.owner = t2.owner
 END OF STMT
 PARSE #140311192202592:c=20997,e=76035,p=1,cr=36,cu=0,mis=1,r=0,dep=0,og=1,
 plh=3302976337,tim=589822283
 EXEC #140311192202592:c=0,e=121,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,
 plh=3302976337,tim=589822564
 WAIT #140311192202592: nam='SQL*Net message to client' ela= 13 driver id=1413697536
 #bytes=1 p3=0 obj#=19689 tim=589822643
 WAIT #140311192202592: nam='Disk file operations I/O' ela= 53 FileOperation=2 fileno=4
 filetype=2 obj#=92417 tim=589823314
 WAIT #140311192202592: nam='db file sequential read' ela= 7470 file#=4 block#=178 blocks=1
 obj#=92417 tim=589830842
 WAIT #140311192202592: nam='direct path read' ela= 2166 file number=4 first dba=179 block
 cnt=13 obj#=92417 tim=589834270
 kslwtectx<-ksfdaio<-kcflbi<-kcbldio<-kcblrd<-kcblgt<-kcbldrget<-kcbgtcr<-ktrget3<-
 ktrget2<-kdst_fetch<-kdstf000010100001km<-kdsttgr<-qertbFetch<-qerstFetch<-rwsfcd<-
 qerstFetch<-qerhjFetch<-qerstFetch<-qergsFetch<-qerstFetch<-opifch2<-kpoal8<-opiodr<-
 ttcpips
 WAIT #140311192202592: nam='direct path read' ela= 26985 file number=4 first dba=193 block
 cnt=15 obj#=92417 tim=590021945
 kslwtectx<-ksfdaio<-kcflbi<-kcbldio<-kcblrd<-kcblgt<-kcbldrget<-kcbgtcr<-ktrget3<-
 ktrget2<-kdst_fetch<-kdstf000010100001km<-kdsttgr<-qertbFetch<-qerstFetch<-rwsfcd<-
 qerstFetch<-qerhjFetch<-qerstFetch<-qergsFetch<-qerstFetch<-opifch2<-kpoal8<-opiodr<-
 ttcpips
 …

In this example a call stack is dumped every time after the wait event “direct path read” has occurred.
The function kslwtectx() is called at the end of a wait event (in this case “direct path read”) and the
rest of the call stack is related to the I/O request itself.

Real life root cause identified and fixed with help of stack traces
A real life root cause analysis with stack tracing is described in one of my blog posts. The whole issue
including the solution is described here: http://scn.sap.com/community/oracle/blog/2013/01/10/oracle-
advanced-performance-troubleshooting-with-oradebug-and-stack-sampling

DOAG conference, November 17th - 20th 2015 | Nuremberg

17

References
[1] http://shop.oreilly.com/product/9780596005276.do
[2] http://blog.tanelpoder.com/files/scripts/snapper.sql
[3] http://man7.org/linux/man-pages/man2/syscalls.2.html
[4] https://lwn.net/Articles/446528/
[5] https://fritshoogland.wordpress.com/2014/04/27/systemtap-revisited/
[6] http://www.orafaq.com/papers/oradebug.pdf
[7] http://blog.tanelpoder.com/2008/10/31/advanced-oracle-troubleshooting-guide-part-9-process-
stack-profiling-from-sqlplus-using-ostackprof/
[8] http://shop.oreilly.com/product/9781565925984.do
[9] http://blog.tanelpoder.com/2007/08/27/advanced-oracle-troubleshooting-guide-part-2-no-magic-is-
needed-systematic-approach-will-do/
[10] https://fritshoogland.wordpress.com/2013/12/17/when-the-oracle-wait-interface-isnt-enough-part-
2-understanding-measurements/
[11] http://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&externalId=2030221
[12] http://blog.tanelpoder.com/files/scripts/tools/unix/os_explain
[13] http://www.brendangregg.com/flamegraphs.html
[14] http://resources.orapub.com/Fulltime_sh_Report_Oracle_Wait_and_CPU_Details_p/fulltime-
sh.htm

Contact address:
Stefan Koehler
Freelance Consultant (Soocs)
Gustav-Freytag-Weg 29
D-96450 Coburg, Germany

Phone: +49 (0) 172 / 1796830
E-Mail contact@soocs.de
Internet: http://www.soocs.de
Twitter: @OracleSK

