
11.11.15! Page 1!

Identifying performance issues beyond the 
Oracle wait interface  

 
 
 
 
 

Stefan Koehler!



About me!

Stefan Koehler!
•  Independent Oracle performance consultant and researcher!
•  12+ years using Oracle RDBMS!
•  Oracle performance and internals geek!
•  Main interests: Cost based optimizer and Oracle RDBMS internals!
!

Focus & Services: “It is all about performance” !
•  Oracle performance tuning (e.g. Application, CBO, Database, Design, SQL)!
•  Oracle core internals researching (e.g. DTrace, GDB, Perf, etc.)!
•  Troubleshooting nontrivial Oracle RDBMS issues (e.g. Heap dumps, System State 

dumps, etc.)!
•  Services are mainly based on short-term contracting ! !!

! !!
! !www.soocs.de  ! !contact@soocs.de ! !@OracleSK  !

!
!

11.11.15! Page 2!



Agenda!

•  Systematic troubleshooting - What are we talking about?!
•  “System call trace” vs. “Stack trace”!
•  Capturing and interpreting “Stack traces” with focus on Linux!
•  Safety warning - Are “Stack traces” safe to use in production?!
•  Combine Oracle wait interface and “Stack traces”!
•  Real life root cause identified + fixed with help of “Stack traces”!

11.11.15! Page 3!



Systematic troubleshooting - What are  
we talking about? (1)!

11.11.15! Page 4!



Systematic troubleshooting - What are  
we talking about? (2)!
1.  Identify performance bottleneck based on response time  

Method R by Cary Millsap!

2.  Interpret execution plan with help of additional SQL execution 
statistics (or Real-Time SQL Monitoring) and wait interface!
•  PL/SQL package DBMS_XPLAN or DBMS_SQLTUNE!
!

3.  Capture and interpret session statistics and performance 
counters!
•  Tools like Snapper by Tanel Poder!
!

4.   Capture and interpret system call or stack traces!
•  This is what this session is about. Disassembling Oracle code.!

11.11.15! Page 5!

Business process is affected by 
single SQL running on CPU only 

No execution plan issue found 

Still no obvious root cause  
for the high CPU load  



“System call trace” vs. “Stack trace”!

•  System call trace!
•  A system call is the fundamental interface between an application and the (Linux) 

kernel and is generally not invoked directly, but rather via wrapper functions in 
glibc (or some other library). For example: truncate() à truncate() or truncate64()!

•  Example of Oracle using system calls: gettimeofday(), pread(), etc.!
•  Tools: Strace (Linux), Truss (AIX / Solaris), Tusc (HP-UX)!
•  Be aware of vDSO / vSyscall64 feature when tracing system calls on Linux!
!

•  Stack trace / Stack backtrace!
•  A call stack is the list of names of methods called at run time from the beginning of 

a program until the execution of the current statement!
•  Tools: Oradebug (Oracle), GDB + wrappers or Perf or SystemTap (Linux),          

! ! DTrace (Solaris), Procstack (AIX)!
!

11.11.15! Page 6!

The stack trace includes the called methods / functions of an Oracle process 
and the system call trace includes only the (function) requests to the OS kernel 



Capturing “Stack traces” with focus on  
Linux (1)!
•  Tool “Oradebug” (Oracle tool and platform independent)!
!SQL> oradebug SETMYPID / SETOSPID <PID>        
 SQL> oradebug SHORT_STACK 

!
!

11.11.15! Page 7!

Code path of oradebug request - SIGUSR2 signal 
+<NUM> = Offset in bytes from beginning of symbol 
(function) where child function call happened   



Capturing “Stack traces” with focus on  
Linux (2)!
•  Tool “GDB” (GNU debugger) and its wrapper script pstack!

 shell> gdb        shell> /usr/bin/pstack <PID>
 (gdb) attach <PID>              
 (gdb) backtrace          

11.11.15! Page 8!

GDB is based on ptrace() system calls 



Capturing “Stack traces” with focus on  
Linux (3)!
•  Performance counters for Linux (Linux kernel-based subsystem)!

•  Framework for collecting and analyzing performance data, e.g. hardware events, 
including retired instructions and processor clock cycles and many more!

•  Based on sampling (default avg. 1000 Hz respectively 1000 samples/sec)!
•  Caution in virtualized environments when capturing cpu-cycles events (VMware 

KB #2030221)!
•  Tool ”Perf” is based on perf_events interface exported by Linux kernel (>= 2.6.31)!
shell> perf record -e cpu-cycles -o /tmp/perf.out -g -p <PID>   

!
•  Poor man’s stack profiling!

•  When no other tool is available and you need a quick insight into sampled stacks!
 shell> export LC_ALL=C ; for i in {1..20} ; do pstack <PID>   
   | ./os_explain -a ; done | sort -r | uniq -c!

11.11.15! Page 9!

Hardware event (cpu-cycles) = Usage of kernel’s performance registers 
Software event (cpu-clock)    = Depends on timer interrupt 

Script by Tanel Poder to translate C function names into known functionality  



Capturing “Stack traces” with focus on  
Linux (4)!
•  Listing other capturing tools for completeness!

•  OStackProf by Tanel Poder (needs to be run from Windows SQL*Plus client as 
based on oradebug short_stack and VBS script for post processing)!

•  DTrace on Solaris (e.g. DTrace toolkit script “hotuser” by Brendan Gregg or 
analysis with PID provider)!

•  DTrace on Linux lacks in case of userspace integration / probing!

•  SystemTap (with Linux kernel >= 3.5 for userspace probing) otherwise “utrace 
patch” needs to be applied!

!
11.11.15! Page 10!



Interpreting “Stack traces” with focus on  
Linux!
•  Performance counters for Linux (Linux kernel-based subsystem)!

•  Tool “Perf”!
 shell> perf report -i /tmp/perf.out -g none -n --stdio    
 shell> perf report -i /tmp/perf.out -g graph -n --stdio !
!Problem: Depending on the stack trace content there may be too much data to 
!interpret in this format. Main question: Where is the bulk of CPU time spent?!

!
•  Tool “Flame Graph” by Brendan Gregg (works with DTrace & SystemTap too)!

!shell> perf script -i /tmp/perf.out | ./stackcollapse-  
        perf.pl > out.perf.folded       
 shell>./flamegraph.pl out.perf.folded > perf-out.svg 

11.11.15! Page 11!



Safety warning - Are “Stack traces” safe  
to use in production?!
•  If your database is already in such a state …! ! ! ! !         

… then don’t worry about the possible ! ! !   
consequences and issues by capturing ! ! ! ! !       
stack traces!

!
•  Be aware of different behavior by capturing stack traces, if only 

some specific business processes are affected  !
•  Tool “Oradebug” - “Unsafe” as it alters code path / SIGUSR2 (e.g bug #15677306)!
•  Tool “GDB” (and its wrappers) - “Unsafe” as it suspends the process (ptrace 

syscall) with possible impact on communication to kernel or other processes!
•  Tool “Perf” based on Linux performance counters - Safe by design, but fallback to 

the other tools is still needed, if the process is not running on CPU and stuck 
somewhere else!

•  DTrace (Solaris) - Safe by design!

!
11.11.15! Page 12!



Combine Oracle wait interface and  
“Stack traces”!
•  Fulltime.sh by Craig Shallahamer and Frits Hoogland!

•  Based on V$SESSION_EVENT and Linux performance counters!
shell> fulltime.sh <PID> <SAMPLE_DURATION> <SAMPLE_COUNT> 

 

•  Oracle 12c enhancement - Diagnostic event “wait_event[]” in 
"new" kernel diagnostics & tracing infrastructure!
SQL> oradebug doc event name wait_event      
wait_event: event to control wait event post-wakeup actions 

SQL> alter session set events 'wait_event["<wait event name>"]  
trace("%s\n", shortstack())'; 

11.11.15! Page 13!

Combine extended SQL trace & event wait_event[] 
Function kslwtectx marks end of wait event 



Real life root cause identified + fixed  
with help of “Stack traces” (1)!
•  Environment and issue!

•  Large SAP system with Oracle 11.2.0.2 running on AIX 6.1 !
•  Most of the SAP work processes are stuck in a simple INSERT statement and 

burning up all CPUs on database server!
•  Index key compression and OLTP compression is enabled!
•  SQL statement:!
  SQL> INSERT INTO "BSIS”  VALUES(:A0 , ... ,:A81);  

•  Applying systematic troubleshooting!
•  Identify performance bottleneck based on response time with Method R!

!Performance bottleneck is clearly caused by the INSERT statement as 100% 
!of the end user response time is spent on it and all application processes are 
!affected by this !
!No further response time analysis needed here!

!11.11.15! Page 14!



Real life root cause identified + fixed  
with help of “Stack traces” (2)!
•  Applying systematic troubleshooting!

•  Interpret execution plan with help of additional SQL execution statistics (or Real-
Time SQL Monitoring) and wait interface!

!

11.11.15! Page 15!



Real life root cause identified + fixed  
with help of “Stack traces” (3)!
•  Applying systematic troubleshooting!

•  Capture and interpret session statistics and performance counters!
!

!

11.11.15! Page 16!



Real life root cause identified + fixed  
with help of “Stack traces” (4)!
•  Applying systematic troubleshooting!

•  Capture and interpret session statistics and performance counters!

!

11.11.15! Page 17!



Real life root cause identified + fixed  
with help of “Stack traces” (5)!
•  Applying systematic troubleshooting!

•   Capture and interpret system call or stack traces!
!!

!
!
!

•  Process is stuck in main call stack “ktspscan_bmb” + on-top functions. The 
high CPU usage (“session logical reads”) is the consequence of it!

•  Table “BSIS” is stored in an ASSM tablespace and the call stack “ktspfsrch <-
ktspscan_bmb” is related to “first level bitmap block search”!

•  MOS search results in bug #13641076 – “HIGH AMOUNT OF BUFFER GETS 
FOR INSERT STATEMENT  REJECTIONLIST DOES NOT FIRE”!

•  Root cause found and can be fixed by applying corresponding patch!

     !
   !

11.11.15! Page 18!



!
!
!
!
!
!
!
!
!

!!
!

! ! !!
! !!
! !www.soocs.de  ! !contact@soocs.de ! !@OracleSK  !

!
!

Questions and answers!

11.11.15! Page 19!

Download links and further information to all mentioned tools and procedures 
are in the reference section of the manuscript  


