
16.06.16 Page 1

Troubleshooting Oracle performance issues
beyond the Oracle wait interface 

 
 
 
 
 
 

Stefan Koehler

About me

Stefan Koehler
•  Independent Oracle performance consultant and researcher
•  13+ years using Oracle RDBMS - Independent since 2011
•  Oracle performance and internals geek
•  Main interests: Cost based optimizer and Oracle RDBMS internals

Services: “All about performance & troubleshooting”
•  Oracle performance tuning (e.g. Application, CBO, Database, Design, SQL)
•  Oracle core internals researching (e.g. DTrace, GDB, Perf, etc.)
•  Troubleshooting nontrivial Oracle RDBMS issues (e.g. Heap dumps, System state

dumps, etc.)
•  Services are mainly based on short-term contracting

www.soocs.de contact@soocs.de @OracleSK
16.06.16 Page 2

Agenda

•  Systematic troubleshooting - What are we talking about?
•  Basics of Oracle’s extended SQL trace & event instrumentation
•  “System call trace” vs. “Stack trace”
•  Capturing and interpreting “Stack traces” with focus on Linux

•  Oradebug (Oracle), GDB and its wrapper (OS), Perf (OS), Others

•  Safety warning - Are “Stack traces” safe to use in production?
•  Combine Oracle wait interface and “Stack traces”
•  Use cases

•  Long parse time
•  Real life root cause identified + fixed with help of “Stack traces”

16.06.16 Page 3

Systematic troubleshooting - What are  
we talking about? (1)

16.06.16 Page 4

Systematic troubleshooting - What are  
we talking about? (2)
1.  Identify performance bottleneck based on response time

Method R by Cary Millsap

2.  Interpret execution plan with help of additional SQL execution
statistics (or Real-Time SQL Monitoring) and/or wait interface
•  PL/SQL package DBMS_XPLAN or DBMS_SQLTUNE

3.  Capture and interpret session statistics and performance
counters
•  Tools like Snapper by Tanel Poder

4.  Capture and interpret system call or stack traces
•  This is what this session is about. Disassembling Oracle code.

16.06.16 Page 5

Business process is affected by
single SQL running on CPU only

No execution plan issue found

Still no obvious root cause
for the high CPU load

Basics of Oracle’s extended SQL trace  
and event instrumentation (1)
•  Extended SQL trace basics

•  Database call (= OPI call) lines
begin with the keyword PARSE, EXEC, FETCH, CLOSE, RPC EXEC, UNMAP,
SORT UNMAP, LOBREAD, or LOBARRTMPFRE. Such a line indicates that an
application client has made a database call, and that the database has
responded to it.

•  System call lines
begin with the keyword WAIT. Such a line indicates that the Oracle kernel
process has made one (or more) syscall, and that the OS has responded to it.

16.06.16 Page 6

More CPU time than elapsed time?
- CPU time value is precise to ±10.000 microseconds
- Elapsed time value is precise to ±1 microseconds

Basics of Oracle’s extended SQL trace  
and event instrumentation (2)
•  Oracle’s event instrumentation basics

•  Database call lines (simplified)

•  System call lines (simplified)

16.06.16 Page 7

Screenshots from ISBN 1518897886

Instrumentation overhead of round about 6 microseconds for wait events in average

Basics of Oracle’s extended SQL trace  
and event instrumentation (3)
•  Are all OPI calls instrumented in Oracle’s extended SQL trace?

SQL> select count(*) from v$toplevelcall;
SQL> alter session set events '10051 trace name context forever,

 level 1';

 16.06.16 Page 8

Screenshots from ISBN 1518897886

Client side (OCI) Server side (OPI)

kpoal8()

opifch2()

opiosq0()

opiexe()

opifch2()

opiprs()

“System call trace” vs. “Stack trace”

•  System call trace
•  A system call is the fundamental interface between an application and the (Linux)

kernel and is generally not invoked directly, but rather via wrapper functions in
glibc (or some other library). For example: truncate() à truncate() or truncate64()

•  Example of Oracle using system calls: gettimeofday(), clock_gettime(), pread()
•  Tools: Strace (Linux), Truss (AIX / Solaris), Tusc (HP-UX)
•  Be aware of vDSO / vSyscall64 feature when tracing system calls on Linux

(control option “kernel.vsyscall64” has been removed with kernel version 3.0)

•  Stack trace / Stack backtrace
•  A call stack is the list of names of methods called at run time from the beginning of

a program until the execution of the current statement
•  Tools: Oradebug (Oracle), GDB + wrappers or Perf or SystemTap (Linux),

 DTrace (Solaris), Procstack (AIX)

16.06.16 Page 9

The stack trace includes the called methods / functions of an Oracle process
and the system call trace includes only the (function) requests to the OS kernel

Capturing “Stack traces” with focus on  
Linux (1)
•  Tool “Oradebug” (Oracle tool and platform independent)

SQL> oradebug SETMYPID / SETOSPID <PID>
 SQL> oradebug SHORT_STACK

16.06.16 Page 10

Code path of oradebug request - SIGUSR2 signal
+<NUM> = Offset in bytes from beginning of symbol
(function) where child function call happened

Oracle kernel layers from ISBN 1-56592-598-X

Translation of Oracle kernel function names
1.  MOS ID #175982.1 (Google it)
2.  ORADEBUG DOC COMPONENT
3.  My Oracle support bug section
4.  Google

Capturing “Stack traces” with focus on  
Linux (2)
•  Tool “GDB” (GNU debugger) and its wrapper script pstack

 shell> gdb shell> /usr/bin/pstack <PID>
 (gdb) attach <PID>
 (gdb) backtrace

16.06.16 Page 11

GDB is based on ptrace() system calls

Capturing “Stack traces” with focus on  
Linux (3)
•  Performance counters for Linux (Linux kernel-based subsystem)

•  Framework for collecting and analyzing performance data, e.g. hardware events,
including retired instructions and processor clock cycles and many more

•  Based on sampling (default avg. 1000 Hz respectively 1000 samples/sec)
•  Caution in virtualized environments when capturing cpu-cycles events (VMware

KB #2030221)
•  Tool ”Perf” is based on perf_events interface exported by Linux kernel (>= 2.6.31)
shell> perf record -e cpu-cycles -o /tmp/perf.out -g -p <PID>

•  Poor man’s stack profiling
•  When no other tool is available and you need a quick insight into sampled stacks

 shell> export LC_ALL=C ; for i in {1..20} ; do pstack <PID>
 | ./os_explain -a ; done | sort -r | uniq -c

16.06.16 Page 12

Hardware event (cpu-cycles) = Usage of kernel’s performance registers
Software event (cpu-clock) = Depends on timer interrupt

Script by Tanel Poder to translate C function names into known functionality

Capturing “Stack traces” with focus on  
Linux (4)
•  Listing other capturing tools for completeness

•  OStackProf by Tanel Poder (needs to be run from Windows SQL*Plus client as
based on oradebug short_stack and VBS script for post processing)

•  DTrace on Solaris (e.g. DTrace toolkit script “hotuser” by Brendan Gregg or
analysis with PID provider)

•  DTrace on Linux lacks in case of userspace integration / probing

•  SystemTap (with Linux kernel >= 3.5 for userspace probing) otherwise “utrace
patch” needs to be applied

16.06.16 Page 13

Interpreting “Stack traces” with focus on  
Linux
•  Performance counters for Linux (Linux kernel-based subsystem)

•  Tool “Perf”
 shell> perf report -i /tmp/perf.out -g none -n --stdio
 shell> perf report -i /tmp/perf.out -g graph -n --stdio

Problem: Depending on the stack trace content there may be too much data to
interpret in this format. Main question: Where is the bulk of CPU time spent?

•  Tool “Flame Graph” by Brendan Gregg (works with DTrace & SystemTap too)
shell> perf script -i /tmp/perf.out | ./stackcollapse-

 perf.pl > out.perf.folded
 shell>./flamegraph.pl out.perf.folded > perf-out.svg

16.06.16 Page 14

Safety warning - Are “Stack traces” safe  
to use in production?
•  If your database is already in such a state …

… then don’t worry about the possible
consequences and issues by capturing
stack traces

•  Be aware of different behavior by capturing stack traces, if only
some specific business processes are affected
•  Tool “Oradebug” - “Unsafe” as it alters code path / SIGUSR2 (e.g bug #15677306)
•  Tool “GDB” (and its wrappers) - “Unsafe” as it suspends the process (ptrace

syscall) with possible impact on communication to kernel or other processes
•  Tool “Perf” based on Linux performance counters - Safe by design, but fallback to

the other tools is still needed, if the process is not running on CPU and stuck
somewhere else

•  DTrace (Solaris) - Safe by design

16.06.16 Page 15

Combine Oracle wait interface and  
“Stack traces” (1)
•  Fulltime.sh by Craig Shallahamer and Frits Hoogland

•  Based on V$SESSION_EVENT and Linux performance counters
shell> fulltime.sh <PID> <SAMPLE_DURATION> <SAMPLE_COUNT>

16.06.16 Page 16

Combine Oracle wait interface and  
“Stack traces” (2)
•  Oracle 12c enhancement - Diagnostic event “wait_event[]” in

"new" kernel diagnostics & tracing infrastructure
SQL> oradebug doc event name wait_event
wait_event: event to control wait event post-wakeup actions

SQL> alter session set events 'wait_event["<wait event name>"]
trace("%s\n", shortstack())';

SQL> alter session set events 'wait_event["<wait event name>"]
{wait:minwait=1000} trace(''event "%", p1 %, p2 %, p3 %, wait
time %\nStk=%\n'', evargs(5), evargn(2), evargn(3),evargn(4),
evargn(1), shortstack())';

16.06.16 Page 17

Combine extended SQL trace & event wait_event[]
Function kslwtectx marks end of wait event

Additional condition (e.g. min wait duration in microseconds) and different syntax
is also available

Use case: Long parse time (1)

•  Common expression of “parsing a SQL” is a two step approach
•  Parsing (simplified)

Oracle checks if the SQL statement is a valid one (syntactic analysis).
Afterwards it checks and figures out things like object types, columns in object
types, constraints, triggers, indexes, privileges, etc. (semantic analysis).

•  Optimizing (simplified)
After the statement is parsed, the optimizer starts its work by checking stats and
doing its arithmetic (logical and physical).

•  Which db call does parse / optimize a SQL and consumes CPU?
•  PARSE #?

•  EXEC #?

16.06.16 Page 18

Sa
m

e
SE

LE
C

T
1

sl
ig

ht
ly

 d
iff

145.88 sec CPU time on PARSE #

173.18 sec CPU time on EXEC #

Deferred optimization

Use case: Long parse time (2)

•  Oracle version < 12.1.0.2.160419 (PSU Apr 2016)
•  Need to profile the CBO C call stack

•  Oracle version >= 12.1.0.2.160419 (PSU Apr 2016)
•  CBO (10053) trace enhancement #16923858 - MOS ID #16923858.8
•  May still need to profile the CBO C call stack if parsing is stuck forever

16.06.16 Page 19

Use case: Real life root cause identified  
+ fixed with help of “Stack traces” (1)
•  Environment and issue

•  Large SAP system with Oracle 11.2.0.2 running on AIX 6.1
•  Most of the SAP work processes are stuck in a simple INSERT statement and

burning up all CPUs on database server
•  Index key compression and OLTP compression is enabled
•  SQL statement:
 SQL> INSERT INTO "BSIS” VALUES(:A0 , ... ,:A81);

•  Applying systematic troubleshooting
•  Identify performance bottleneck based on response time with Method R

Performance bottleneck is clearly caused by the INSERT statement as 100%
of the end user response time is spent on it and all application processes are
affected by this
No further response time analysis needed here

16.06.16 Page 20

Use case: Real life root cause identified  
+ fixed with help of “Stack traces” (2)
•  Applying systematic troubleshooting

•  Interpret execution plan with help of additional SQL execution statistics (or Real-
Time SQL Monitoring) and wait interface

16.06.16 Page 21

Use case: Real life root cause identified  
+ fixed with help of “Stack traces” (3)
•  Applying systematic troubleshooting

•  Capture and interpret session statistics and performance counters

16.06.16 Page 22

Use case: Real life root cause identified  
+ fixed with help of “Stack traces” (4)
•  Applying systematic troubleshooting

•  Capture and interpret session statistics and performance counters

16.06.16 Page 23

Use case: Real life root cause identified  
+ fixed with help of “Stack traces” (5)
•  Applying systematic troubleshooting

•  Capture and interpret system call or stack traces

•  Process is stuck in main call stack “ktspscan_bmb” + on-top functions. The
high CPU usage (“session logical reads”) is the consequence of it

•  Table “BSIS” is stored in an ASSM tablespace and the call stack “ktspfsrch <-
ktspscan_bmb” is related to “first level bitmap block search”

•  MOS search results in bug #13641076 – “HIGH AMOUNT OF BUFFER GETS
FOR INSERT STATEMENT ­ REJECTIONLIST DOES NOT FIRE”

•  Root cause found and can be fixed by applying corresponding patch

16.06.16 Page 24

www.soocs.de contact@soocs.de @OracleSK

Questions and answers

16.06.16 Page 25

Download links and further information about all mentioned tools and
procedures can be found on website www.soocs.de/public/talk/

